Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 11(1): 2340, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504894

RESUMO

Cytokine profiling is a valuable tool for monitoring immune responses associated with disease and treatment. This study assessed the impact of sex and sedation on serum cytokines in healthy nonhuman primates (NHPs). Twenty-three cytokines were measured from serum using a bead-based multiplex assay. Assay validation for precision, sensitivity, recovery, linearity, and stability was performed. Samples from male and female cynomolgus and rhesus macaques either cooperating or sedated were compared. All cytokines except TNFα demonstrated acceptable sensitivity and precision, with variable recovery and linearity. IFNγ, IL-2, IL-5, IL-6, IL-8, IL-12/23 (p40), IL-13, IL-15, MCP-1, TGFα, VEGF met acceptance criteria; G-CSF, IL-4, IL-10, MIP1α, sCD40L were marginal. Higher cytokine levels were observed in females and cytokine levels were blunted in sedated NHPs when compared to awake cooperating NHPs. Significant differences observed in cytokines related to sex, species, or imposed by handling highlight the importance of model design on translational relevance for clinical settings.


Assuntos
Citocinas/sangue , Macaca mulatta/metabolismo , Animais , Citocinas/metabolismo , Feminino , Imunoensaio , Macaca mulatta/sangue , Macaca mulatta/imunologia , Masculino , Reprodutibilidade dos Testes , Caracteres Sexuais
2.
J Biomol Tech ; 31(1): 11-26, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969795

RESUMO

Shared research resource facilities, also known as core laboratories (Cores), are responsible for generating a significant and growing portion of the research data in academic biomedical research institutions. Cores represent a central repository for institutional knowledge management, with deep expertise in the strengths and limitations of technology and its applications. They inherently support transparency and scientific reproducibility by protecting against cognitive bias in research design and data analysis, and they have institutional responsibility for the conduct of research (research ethics, regulatory compliance, and financial accountability) performed in their Cores. The Association of Biomolecular Resource Facilities (ABRF) is a FASEB-member scientific society whose members are scientists and administrators that manage or support Cores. The ABRF Research Groups (RGs), representing expertise for an array of cutting-edge and established technology platforms, perform multicenter research studies to determine and communicate best practices and community-based standards. This review provides a summary of the contributions of the ABRF RGs to promote scientific rigor and reproducibility in Cores from the published literature, ABRF meetings, and ABRF RGs communications.


Assuntos
Pesquisa Biomédica/normas , Laboratórios/normas , Reprodutibilidade dos Testes , Pesquisa Biomédica/organização & administração , Biologia Computacional/métodos , Biologia Computacional/normas , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Genômica/métodos , Genômica/normas , Humanos , Laboratórios/organização & administração , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Metabolômica/métodos , Metabolômica/normas , Microscopia/métodos , Microscopia/normas , Proteômica/métodos , Proteômica/normas
3.
J Biomol Tech ; 30(3): 36-44, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31452645

RESUMO

Shared scientific resources, also known as core facilities, support a significant portion of the research conducted at biomolecular research institutions. The Association of Biomolecular Resource Facilities (ABRF) established the Committee on Core Rigor and Reproducibility (CCoRRe) to further its mission of integrating advanced technologies, education, and communication in the operations of shared scientific resources in support of reproducible research. In order to first assess the needs of the scientific shared resource community, the CCoRRe solicited feedback from ABRF members via a survey. The purpose of the survey was to gain information on how U.S. National Institutes of Health (NIH) initiatives on advancing scientific rigor and reproducibility influenced current services and new technology development. In addition, the survey aimed to identify the challenges and opportunities related to implementation of new reporting requirements and to identify new practices and resources needed to ensure rigorous research. The results revealed a surprising unfamiliarity with the NIH guidelines. Many of the perceived challenges to the effective implementation of best practices (i.e., those designed to ensure rigor and reproducibility) were similarly noted as a challenge to effective provision of support services in a core setting. Further, most cores routinely use best practices and offer services that support rigor and reproducibility. These services include access to well-maintained instrumentation and training on experimental design and data analysis as well as data management. Feedback from this survey will enable the ABRF to build better educational resources and share critical best-practice guidelines. These resources will become important tools to the core community and the researchers they serve to impact rigor and transparency across the range of science and technology.


Assuntos
Pesquisa Biomédica/normas , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Pesquisa Biomédica/legislação & jurisprudência , Pesquisa Biomédica/métodos , Custos e Análise de Custo , Equipamentos e Provisões/normas , Equipamentos e Provisões/provisão & distribuição , Humanos , National Institutes of Health (U.S.) , Guias de Prática Clínica como Assunto , Pesquisadores , Inquéritos e Questionários , Fatores de Tempo , Estados Unidos
4.
Xenotransplantation ; 24(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28731212

RESUMO

BACKGROUND: C-peptide concentration is widely used as a marker of insulin secretion and is especially relevant in evaluating islet graft function following transplantation, because its measurement is not confounded by the presence of exogenous insulin. To address the shortage of human islet donors, the use of porcine islets has been proposed as a possible solution and the stringent pig-to-non-human primate (NHP) model is often the most relevant for pre-clinical evaluation of the potential for diabetes reversal resulting from an islet xenograft. The Millipore radioimmunoassay (RIA) was exclusively used to measure porcine C-peptide (PCP) until 2013 when the assay was discontinued and subsequently a commercially available enzyme-linked immunosorbent assay (ELISA) from Mercodia has been widely adopted. Both assays have been used in pre-clinical trials evaluating the therapeutic potential of xenograft products in reversing diabetes in the pig-to-NHP model, to interpret data in a comparable way it may be useful to perform a harmonization of C-peptide measurements. METHODS: We performed a method comparison by determining the PCP concentration in 620 serum samples collected from 20 diabetic cynomolgus macaques transplanted with adult porcine islets. All analyses were performed according to manufacturer instructions. RESULTS: With both assays, we demonstrated an acceptable detection limit, precision, and recovery. Linearity of the ELISA met acceptance criteria at all concentrations tested while linearity of the RIA only met acceptance criteria at five of the eight concentrations tested. The RIA had a detection limit of 0.16 ng/mL, and recovery ranged from 82% to 96% and met linearity acceptance criteria at 0.35 ng/mL and from 0.78 to 2.33 ng/mL. The ELISA had a detection limit of 0.03 ng/mL, and recovery ranged from 81% to 115% and met linearity acceptance criteria from 0.08 to 0.85 ng/mL. Both assays had intra-assay precision <11% and inter-assay precision <14%. PCP concentration measured by ELISA demonstrated a significant correlation with RIA (R2 =.9721, P<.0001). This strong correlation supports use of the regression equation y=2.029x+0.0897 to transform ELISA data to RIA or inversely y=0.4930x-0.0456 to convert RIA data to ELISA for direct comparison between assays in the concentration range of 0-3.0 ng/mL. Measured C-peptide concentration was lower with the ELISA than with the RIA; individual measurements plotted against the averages of the pair demonstrated that the variability from the mean strongly depended on increasing concentration. CONCLUSIONS: Porcine C-peptide can be reliably measured in NHP serum using the Mercodia ELISA, making this assay interchangeable with the Millipore RIA. Inherent differences in antibody affinity and calibration factors may explain the lower ELISA values as compared to the RIA; however without access to a traceable reference standard, it is not possible to determine which assay is most accurate. Regression modeling resulted in a correction factor appropriate for conversion of ELISA data to RIA-equivalent data facilitating comparison of assay results longitudinally and between groups.


Assuntos
Peptídeo C/sangue , Ensaio de Imunoadsorção Enzimática , Reprodutibilidade dos Testes , Transplante Heterólogo , Animais , Bioensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Insulina/sangue , Primatas , Radioimunoensaio/métodos , Sensibilidade e Especificidade , Suínos , Transplante Heterólogo/métodos
5.
J Vet Diagn Invest ; 27(6): 716-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26472744

RESUMO

Thyroxine (T4), free T4 (FT4), and thyrotropin (TSH) concentrations were measured in serum from 693 healthy representatives from 7 dog breeds (Alaskan Malamute, Collie, English Setter, Golden Retriever, Keeshond, Samoyed, or Siberian Husky) to determine whether breed-specific reference intervals (RIs) are warranted. Veterinarians reviewed the health history, performed a physical examination, and approved laboratory data for the enrolled dogs. Many purebred dogs had T4 and FT4 concentrations that were at, or below, the lower limits previously determined for non-breed-specific RIs. Mean concentrations of T4, FT4, and TSH varied significantly among breeds. The range of mean concentration of T4 (19.7 nmol/L [1.53 µg/dL] in English Setters to 29.0 nmol/L [2.25 µg/dL] in Keeshonds) and FT4 (12.6 pmol/L [0.98 ng/dL] in English Setters to 20.2 pmol/L [1.57 ng/dL] in Samoyeds) was considerable. Median TSH values ranged from 6.10 mIU/L (0.07 ng/mL; Alaskan Malamute and Golden Retriever) to 17.6 mIU/L (0.26 ng/mL; Collie). Mean T4 and FT4 concentrations were higher in females. Increasing age was associated with decreasing T4 and FT4, and increasing TSH concentration. The substantial ranges across breeds of measures of central tendency (mean, median) for all hormones indicate that breed-specific RIs are warranted. RIs encompassing the central 95% of reference values for all breeds combined, and for individual breeds, were calculated using nonparametric (TSH) and robust (T4, FT4) methods. Use of breed-specific RIs in combination with careful attention to the potential for pre-analytical and analytical variability in test results will improve thyroid function assessment in these breeds.


Assuntos
Cães/fisiologia , Testes de Função Tireóidea/veterinária , Glândula Tireoide/fisiologia , Tireotropina/sangue , Tiroxina/sangue , Animais , Feminino , Masculino , Valores de Referência , Especificidade da Espécie
6.
Xenotransplantation ; 22(1): 62-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25291621

RESUMO

BACKGROUND: Pre-clinical demonstration of porcine islet graft function is necessary to support the clinical transplantation of pig islets. C-peptide concentration is an especially useful marker of insulin secretion, because its measurement is not confounded by the presence of exogenous insulin. To measure porcine C-peptide (PCP), researchers in the field exclusively used the Millipore (previously Linco Research) radioimmunoassay (RIA) until 2011, when Mercodia released an alternative enzyme-linked immunosorbent assay (ELISA). (At the end of 2013, the Millipore RIA was withdrawn from the market for commercial reasons.) In our current study, to directly compare these two assays, we performed validation studies on each. We also performed interlaboratory comparisons. Then, to determine the level of agreement between the assays, we analyzed the porcine serum C-peptide concentration measurement results obtained from each assay. METHODS: Using pre-established method validation acceptance criteria, we determined and evaluated the detection limit, sensitivity, precision, linearity, and recovery of the two commercially available PCP assays described above (ELISA and RIA). After validation requirements were met, we performed a method comparison by determining C-peptide concentration in 60 serum samples collected from 31 normal, healthy adult Landrace pigs in the fasting state; a subset underwent an intravenous glucose challenge test, to stimulate the typical physiologic range of C-peptide. All analyses were performed according to manufacturer instructions. To compare the assays, we used Deming regression analysis. RESULTS: Both assays met acceptance criteria. The RIA had a sensitivity of 0.1 ng/ml; it was linear to 2.9 ng/ml. The ELISA had a detection limit of 0.03 ng/ml; it was linear to 1.2 ng/ml. Recovery ranged from 89 to 113% with both assays. The coefficient of variability was 8% in interlaboratory comparisons. Deming regression analysis directly comparing both assays revealed significant correlation between them (before log-transformation: R2=0.9803, P<0.0001; after log-transformation: R2=0.9727, P<0.0001). Measured C-peptide concentration was lower with the ELISA than with the RIA; individual measurements plotted against the averages of the pair demonstrated that the variability from the mean strongly depended on increasing concentration. To transform ELISA data, we used the standard regression equation y=2.191x+0.1119 and the log-transformed regression equation y=0.8101x+0.7502. Both the transformed and the log-transformed (exponential) values approximated the measured RIA levels with a high degree of accuracy in the concentration range of 0 to 1.0 ng/ml. CONCLUSIONS: Porcine C-peptide concentration can be reliably measured in porcine serum samples with either assay (ELISA or RIA). However, the C-peptide results generated by these two assays are not equivalent. Therefore, assay bias must be considered before directly comparing pre-clinical studies that used either of these assays. We determined that harmonization between the assays is appropriate in a specific concentration range. Outside of that range, we do not know whether a linear correction function can be more broadly applied. The variation between the two assays may be related to calibration or reagent factors. To determine which assay is truly more accurate and to effectively compare interlaboratory results, we will need a traceable reference standard.


Assuntos
Peptídeo C/sangue , Ensaio de Imunoadsorção Enzimática , Radioimunoensaio , Sus scrofa/sangue , Animais , Peptídeo C/metabolismo , Jejum/sangue , Feminino , Glucose/farmacologia , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/metabolismo , Ensaio de Proficiência Laboratorial , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
7.
Am J Vet Res ; 72(8): 1052-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21801062

RESUMO

OBJECTIVE: To evaluate and compare circulating concentrations of islet amyloid polypeptide (IAPP), insulin, and glucose in nondiabetic cats classified by body condition score (BCS) and in cats with naturally occurring diabetes mellitus. ANIMALS: 109 (82 nondiabetic, 21 nonketoacidotic diabetic, and 6 ketoacidotic diabetic) cats. PROCEDURES: Cats were examined and BCSs were assessed on a scale of 1 to 9. After food was withheld for 12 hours, blood was collected and plasma concentrations of IAPP and serum concentrations of insulin and glucose were measured. Differences in these values were evaluated among nondiabetic cats grouped according to BCS and in diabetic cats grouped as ketoacidotic or nonketoacidotic on the basis of clinicopathologic findings. Correlations were determined among variables. RESULTS: In nondiabetic cats, BCS was significantly and positively correlated with circulating IAPP and insulin concentrations. Mean plasma IAPP concentrations were significantly different between cats with BCSs of 5 and 7, and mean serum insulin concentrations were significantly different between cats with BCSs of 5 and 8. Serum glucose concentrations were not significantly different among nondiabetic cats. Mean IAPP concentrations were similar between nonketoacidotic diabetic cats and nondiabetic cats with BCSs of 8 or 9. Mean IAPP concentrations were significantly reduced in ketoacidotic diabetic cats, compared with those of nondiabetic cats with BCSs of 6 through 8 and of nonketoacidotic diabetic cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that increased BCS (a measure of obesity) is associated with increased circulating concentrations of IAPP and insulin in nondiabetic cats.


Assuntos
Doenças do Gato/fisiopatologia , Diabetes Mellitus/veterinária , Animais , Glicemia/análise , Doenças do Gato/sangue , Doenças do Gato/metabolismo , Gatos , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Cetoacidose Diabética/sangue , Cetoacidose Diabética/metabolismo , Cetoacidose Diabética/fisiopatologia , Cetoacidose Diabética/veterinária , Feminino , Insulina/sangue , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/biossíntese , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Modelos Lineares , Masculino , Estatísticas não Paramétricas
8.
J Am Vet Med Assoc ; 234(6): 767-70, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19284342

RESUMO

OBJECTIVE: To determine whether dogs with renal failure have higher serum cardiac troponin I (cTnI) concentrations than healthy dogs. DESIGN: Case-control study. ANIMALS: 31 dogs with renal failure and 51 healthy dogs. PROCEDURES: Serum concentrations of creatinine and cardiac troponin I, urine specific gravity, and systolic arterial blood pressure were measured for all dogs. Dogs underwent a standardized physical examination, and any dog with evidence of cardiovascular disease or other nonrenal disease was excluded from final analyses. Dogs were considered to be in renal failure when the serum creatinine concentration was >or= 3.0 mg/dL, urine specific gravity was between 1.007 and 1.030, and renal failure had been clinically diagnosed. RESULTS: Dogs with renal failure had significantly higher serum cTnI concentrations (median, 0.35 ng/mL) than did healthy dogs (0.20 ng/mL). The renal failure group also had a significantly higher median systolic blood pressure (156 mm Hg) than did healthy dogs (138 mm Hg), although serum cTnI concentration was not correlated with systolic blood pressure in dogs with renal failure. There was no significant difference in age between dogs with renal failure and healthy dogs, but dogs with renal failure had significantly higher serum creatinine concentration and lower urine specific gravity. CONCLUSIONS AND CLINICAL RELEVANCE: Although dogs with renal failure did not have overt clinical signs of cardiac disease, they had high serum cTnI concentrations, which may have been associated with subclinical cardiovascular disease. The cause of the high serum cTnI concentration in these dogs requires additional investigation.


Assuntos
Doenças do Cão/sangue , Insuficiência Renal/veterinária , Troponina I/sangue , Animais , Biomarcadores/sangue , Pressão Sanguínea/fisiologia , Estudos de Casos e Controles , Creatinina/sangue , Cães , Feminino , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Insuficiência Renal/sangue , Gravidade Específica , Urina/química
9.
Theriogenology ; 66(3): 592-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16828859

RESUMO

Inappropriate sample handling of blood, serum or plasma collected for the determination of hormone concentration may lead to inaccurate endocrine data and diagnoses. Many useful studies have been conducted to determine the potential effects of sample handling on measured hormone concentration. Unfortunately, because reported results frequently differ according to assay method, species studied and parameters measured, it is not always possible to predict the effect of specific sample handling scenarios as they are presented in practice. The objective of this review is to provide a summary of what has been reported in the literature regarding sample-handling procedures that may affect the measurement of hormone concentration in plasma or sera from animals being evaluated for reproductive function.


Assuntos
Coleta de Amostras Sanguíneas/veterinária , Hormônios Tireóideos/sangue , Animais , Coleta de Amostras Sanguíneas/métodos , Gatos , Bovinos , Diagnóstico Diferencial , Cães , Cavalos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...